Ex.1. Find the equation to the byperbola with foci $(6,4)$ and $(-4,4)$ and eccentricity $=2$.
[M.U. 72S]
Soln. The distance between the foci $=\sqrt{\left\{(6+4)^{2}+(4-4)^{2}\right\}}=\sqrt{10^{2}}=10$.
Thus $2 a c=10 \Rightarrow 2 a \cdot 2=10 \therefore a=5 / 2$.
Therefore $b^{2}=a^{2}\left(c^{2}-1\right)=\frac{25}{4}(4-1)=\frac{25}{4} \times 3=\frac{75}{4}$.
Hence the equation of the hyperbola is

$$
\begin{aligned}
& \frac{x^{2}}{a^{2}}-\frac{b^{2}}{b^{2}}=1 \\
& \frac{4 x^{2}}{25}-\frac{4 y^{2}}{75}=1 \\
& 12 x^{2}-4 y^{2}=75
\end{aligned}
$$

$$
\Rightarrow \quad \frac{4 . x^{2}}{25}-\frac{4 y^{2}}{75}=1
$$

$$
\Rightarrow
$$

Ex.2. Find the centre and eccentricity of the hyperbola

$$
x^{2}-4 y^{2}-2 x+24 y-37=0
$$

Soln. The given equation can be written as

$$
\begin{array}{ll}
& \left(x^{2}-2 x\right)-4\left(y^{2}-6 y\right)=37 \\
\Rightarrow \quad & \left.(x-1)^{2}-1-41(y-3)^{2}-9\right\}=37 \\
\Rightarrow \quad & (x-1)^{2}-4(y-3)^{2}=2 .
\end{array}
$$

Writing $x-1=X$ and $y-3=Y$, we get $X^{2}-4 Y^{2}=2$
which represents a hvperbola $\frac{X^{2}}{2}-\frac{Y^{2}}{1 / 2}=1$.
The centre is given by $X=0, Y=0$ i.e. by $x=1$ and $y=3$.
Theeccentricityisgivenby

$$
b^{2}=a^{2}\left(e^{2}-1\right) \text { i.e. by } \frac{1}{2}=2\left(e^{2}-1\right)
$$

which \Rightarrow

$$
e^{2}-4=\frac{1}{4} \Rightarrow e^{2}=4+\frac{1}{4}=\frac{17}{4} \therefore e=\sqrt{17} / 2 .
$$

Ex.3. If e_{1} and e_{2} be the eccentricities of the hyperbolas

$$
\begin{aligned}
& \qquad \begin{array}{l}
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 \text { and } \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=-1, \\
\text { show that } \frac{1}{e_{1}{ }^{2}}+\frac{1}{e_{2}{ }^{2}}=1 . \\
\text { [B.U. 72H; M.U. 78A, 90; R.U. 68S, 70A, } \\
\text { Soln. From the equation } \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1,
\end{array}
\end{aligned}
$$

we have, $\quad b^{2}=a^{2}\left(e_{1}^{2}-1\right) \Rightarrow a^{2} e_{1}^{2}=a^{2}+b^{2}$
The second equation $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=-1$ can be written as $\frac{y^{2}}{b^{2}}-\frac{x^{2}}{a^{2}}=1$.
Hence

$$
\begin{equation*}
a^{2}=b^{2}\left(e_{2}^{2}-1\right) \Rightarrow b^{2} e_{2}^{2}=a^{2}+b^{2} \tag{2}
\end{equation*}
$$

$(1) \Rightarrow \quad \frac{1}{e_{1}{ }^{2}}=\frac{a^{2}}{a^{2}+b^{2}}$.
$(2) \Rightarrow \quad \frac{1}{e_{2}{ }^{2}}=\frac{b^{2}}{a^{2}+b^{2}}$.
On adding, we get $\frac{1}{e_{1}^{2}}+\frac{1}{e_{2}^{2}}=\frac{a^{2}+b^{2}}{a^{2}+b^{2}}=1$.

Ex.4. Chords of the circle $x^{2}+y^{2}=a^{2}$ touch the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$.
Prove that their middle points lie on the curve

$$
\left(x^{2}+y^{2}\right)^{2}=a^{2} x^{2}-b^{2} y^{2}
$$

[P.U. 71A; M.U. 71A, 92H]
Soln. The equation of the chord of the circle $x^{2}+y^{2}=a^{2}$ whose middle point is $(\boldsymbol{\alpha}, \boldsymbol{\beta})$ is

$$
\begin{equation*}
x \alpha+y \beta=\alpha^{2}+\beta^{2} \tag{1}
\end{equation*}
$$

This is obtained by using the formula $S_{1}=T$.
Again the equation of the tangent to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ at the point $\left(x_{1}, y_{1}\right)$ is $\frac{x x_{1}}{a^{2}}-\frac{y y_{1}}{b^{2}}=1$.

Hence, putting $x_{1}=a \sec \theta$ and $y_{1}=b \tan \theta$, the equation of the tangent to the hyperbola at the point ' θ ' is

$$
\begin{equation*}
\frac{x \cdot a \sec \theta}{a^{2}}-\frac{y \cdot b \tan \theta}{b^{2}}=1 \Rightarrow \frac{x \sec \theta}{a}-\frac{y}{b} \tan \theta=1 \tag{2}
\end{equation*}
$$

Since (1) and (2) are the same, therefore

$$
\begin{array}{ll}
& \frac{\alpha a}{\sec \theta}=\frac{\beta b}{-\tan \theta}=\frac{\alpha^{2}+\beta^{2}}{1} \\
\Rightarrow \quad & \sec \theta=\frac{a \alpha}{\alpha^{2}+\beta^{2}} \text { and } \tan \theta=-\frac{\beta b}{\alpha^{2}+\beta^{2}} \\
\Rightarrow \quad & \sec ^{2} \theta-\tan ^{2} \theta=\frac{a^{2} \alpha^{2}}{\left(\alpha^{2}+\beta^{2}\right)^{2}}-\frac{\beta^{2} b^{2}}{\left(\alpha^{2}+\beta^{2}\right)^{2}} \\
\Rightarrow \quad & \frac{a^{2} \alpha^{2}-\beta^{2} b^{2}}{\left(\alpha^{2}+\beta^{2}\right)^{2}}=1 \Rightarrow\left(\alpha^{2}+\beta^{2}\right)^{2}=a^{2} \alpha^{2}-\beta^{2} b^{2}
\end{array}
$$

Hence the locus of the middle point is $\left(x^{2}+y^{2}\right)^{2}=a^{2} x^{2}-b^{2} y^{2}$.

Ex.5. Prove that the locus of the middle points of normal chords of the rectangular byperbola $x^{2}-y^{2}=a^{2}$ is $\left(v^{2}-x^{2}\right)^{3}=4 a^{2} x^{2} y^{2}$
soln. The equation of the normal to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ at the point

$$
\left(x_{1}, y_{1}\right) \text { is } \frac{x-x_{1}}{x_{1} / a^{2}}=\frac{y-y_{1}}{-y_{1} / b^{2}}
$$

In our case, the equation of the normal to the hyperbola $x^{2}-y^{2}=a^{2}$ at the point $(a \sec \theta, a \tan \theta)$ is

$$
\begin{align*}
& \frac{x-a \sec \theta}{\sec \theta / a}=\frac{y-a \tan \theta}{-\tan \theta / a} \\
\Rightarrow \quad & \frac{x}{\sec \theta}-a=-\frac{y}{\tan \theta}+a \Rightarrow \frac{x}{\sec \theta}+\frac{y}{\tan \theta}=2 a \tag{1}
\end{align*}
$$

Again, the equation to the chord of the given hyperbola whose middle point is $(\boldsymbol{\alpha}, \boldsymbol{\beta})$ is

$$
\begin{equation*}
x \alpha-y \beta=\alpha^{2}-\beta^{2} \tag{2}
\end{equation*}
$$

This is obtained from the formula $S_{1}=T$.
Since (1) and (2) represent the same line, therefore comparing (1) and (2), we get

$$
\begin{array}{ll}
& \alpha \sec \theta=-\beta \tan \theta=\frac{\alpha^{2}-\beta^{2}}{2 a} \\
\Rightarrow \quad & \sec \theta=\frac{\alpha^{2}-\beta^{2}}{2 a \alpha} \text { and } \tan \theta=-\frac{\alpha^{2}-\beta^{2}}{-2 a \beta} \\
\Rightarrow \quad & \sec ^{2} \theta-\tan ^{2} \theta=\frac{\left(\alpha^{2}-\beta^{2}\right)^{2}}{4 a^{2} \alpha^{2}}-\frac{\left(\alpha^{2}-\beta^{2}\right)^{2}}{4 a^{2} \beta^{2}} \\
\Rightarrow \quad 1=\frac{\left(\alpha^{2}-\beta^{2}\right)^{2}}{4 a^{2}}\left\{\frac{1}{\alpha^{2}}-\frac{1}{\beta^{2}}\right\} \Rightarrow 4 a^{2} \alpha^{2} \beta^{2}=\left(\alpha^{2}-\beta^{2}\right)^{2}\left(\beta^{2}-\alpha^{2}\right)
\end{array}
$$

$\left.\qquad \beta^{2}-\alpha^{2}\right)^{3}=4 a^{2} \alpha^{2}$
Hence the locus of (α, β) is $\left(\gamma^{2}-x^{2}\right)^{3}=4 a^{2} x^{2} y^{2}$.

